Images  éco-responsables

La compression des images réduit le poids des pages et leur chargement.

En savoir plus

Images  éco-responsables

La compression des images réduit le poids des pages et leur chargement.

En savoir plus

Rechercher dans
Séminaire Economie Recherche Sur le campus

DSA Seminar - Unraveling the predictive power of telematics data in car insurance pricing

Katrien Antonio (K.U. Leuven, Belgium and the University of Amsterdam)

Publié le 14 juin 2017
Lieu
Extranef, 125
Format
Présentiel

A data set from a Belgian telematics product aimed at young drivers is used to identify how car insurance premiums can be designed based on the telematics data collected by a black box installed in the vehicle. In traditional pricing models for car insurance, the premium depends on self-reported rating variables (e.g. age, postal code) which capture characteristics of the policy(holder) and the insured vehicle and are often only indirectly related to the accident risk. Using telematics technology enables tailor-made car insurance pricing based on the driving behavior of the policyholder. We develop a statistical modeling approach using generalized additive models and compositional predictors to quantify and interpret the effect of telematics variables on the expected claim frequency. We find that such variables increase the predictive power and render the use of gender as a discriminating rating variable redundant. Joint work with Roel Verbelen and Gerda Claeskens (KU Leuven, Belgium)


Intervenante(s), Intervenant(s)

Katrien Antonio

K.U. Leuven, Belgium and the University of Amsterdam

Organisation

HEC-DSA

Voir plus d'événements