Images  éco‑responsables

La compression des images réduit le poids des pages et leur chargement.

En savoir plus

Images  éco‑responsables

La compression des images réduit le poids des pages et leur chargement.

En savoir plus

Rechercher dans
Séminaire Recherche

Operations Research Seminar - "High dimensional inference for extreme value indices" - Chen Zhou, Erasmus University Rotterdam

When applying multivariate extreme values statistics to analyze tail risk in compound events defined by a multivariate random vector, one often assumes that all dimensions share the same extreme value index. While such an assumption can be tested using a Wald-type test, the performance of such a test deteriorates as the dimensionality increases. This paper introduces a novel test for testing extreme value indices in a high dimensional setting. We show the asymptotic behavior of the test statistic and conduct simulation studies to evaluate its finite sample performance. The proposed test significantly outperforms existing methods in high dimensional settings. We apply this test to examine two datasets previously assumed to have identical extreme value indices across all dimensions.

Publié le 08 nov. 2024
Lieu
Anthropole, 3088
Format
Présentiel

Intervenante(s), Intervenant(s)

Chen Zhou

Erasmus University Rotterdam

Organisation

V. Chavez et F. Baeriswyl

Voir plus d'événements